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Theory of transverse instability of a bunch in a rectangular potential well is developed. Series of
equations adequately describing the instability is derived and solved both analytically and numer-
ically. Dependence of the instability increment and threshold on bunch factor is investigated for
various beam coupling impedances. The theory is applied to the Fermilab Recycler Ring.

PACS numbers: 29.20.-c, 29.27.Bd

I. INTRODUCTION

Fermilab Recycler is an antiproton storage ring with
stochastic and electron cooling [1]. Transverse resis-
tive wall instability is observed in the ring at intensity
several×1011p̄ and relatively small phase volume of the
bunch. A digital instability damper with high order filter
is used increasing achievable phase density by a factor of
about 2 [2, 3].

A distinctive feature of the Recycler is the RF system
which can create a series of rectangular pulses (other pos-
sibilities are not considered here) [1]. A bunch of several
microseconds long is kept in almost rectangular potential
well which arises between two pulses of alternating polar-
ity (barriers). Synchrotron frequency is very low in such
a bucket (typically several Hz) having a 100% spread.

First theoretical analysis of resistive wall instability in
the Recycler was published in Ref. [3]. It was shown that
dependence of the instability decrement on bunch factor
is rather moderate, and a coasting beam model was used
to find the instability threshold.

More detailed investigation was performed in Ref. [4]
where several impedances of different types were exam-
ined, including space charge and instability damper con-
tributions. The problem was treated in terms of an effec-
tive impedance. It was shown that its real part (which
is responsible for the instability) increases at the bunch
squeezing not faster than its imaginary part. The per-
missibility of a coasting beam model for calculation of
the instability threshold was confirmed by this.

However, a dependence of the increment or the effec-
tive impedance on a bunch factor was not established
thoroughly in the mentioned articles. The basic chal-
lenge is a numerical calculation of high order eigenvalues
of large matrices. Alternative method developed in this
paper does not require a use of such cumbersome matri-
ces, and allows to investigate the increment and threshold
of very high eigenmodes. This is especially important for
systems with an instability damper, where these modes
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are most unstable.
We will consider a single bunch neglecting the penetra-

tion of particles into the barriers. Betatron oscillations
are taken to be linear, because nonlinearity of external
field is very small in the Recycler [1], and nonlinearity of
space charge field does not affect the transverse oscilla-
tions of the beam center [5].

II. BASIC EQUATIONS

Let us consider the transverse dipole moment of a
beam in its rest frame: D(θ) =

∑

k Dk exp (ikθ) where
θ is longitudinal coordinate (azimuth), and dependence
on time is presumed to be given by factor exp (−iωt).
Then the Fourier coefficients Dk satisfy the following se-
ries of equations [4, 6]:

Dk =
i r0ω0N

2πγQ0Z0

∑

l

Ck,l(ω)Zl(ω)Dl (1)

where r0 = e2/mc2 (about 1.535×10−16 cm for protons),
Z0 = 4π/c ≃ 376.7 Ohm, N is the beam intensity,
ω0 and Q0 are central angular velocity and betatron
tune, respectively. Factors Zl(ω) can be represented in
terms of transverse beam coupling impedance in the lab-
oratory frame, or in terms of the corresponding wake field
[7]:

Zk(ω)=Z(ω +kω0) = i

∞
∫

0

W (θ) exp
(

i
[

k +
ω

ω0

]

θ
)

dθ (2)

The general formula for Ck,l(ω) is:

Ck,l(ω) =
∑

m

∞
∫

0

Im,k(ν, ǫ)I∗m,l(ν, ǫ)F(ǫ) dǫ

ω + ω0Q0 − mΩ(ǫ)
(3)

where ǫ is longitudinal action and F(ǫ) is correspond-
ing normalized distribution function, Ω(ǫ) is synchrotron
frequency, ν = Q0 − ξ/η, ξ and η are the machine chro-
maticity and slippage factor, respectively. Form-factors
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Im,k(ν, ǫ) are the coefficients of expansion of a planar
wave in series of multipoles:

Im,k(ν, ǫ) =
1

2π

π
∫

−π

exp
(

imφ − i [k − ν]θ(ǫ, φ)
)

dφ (4)

where the particle azimuth θ should be presented as a
function of synchrotron action and phase.

III. RECTANGULAR POTENTIAL WELL

Now we have to apply these general formulae to
the particles in a rectangular potential well of length
2πB where B is the bunch factor. Then Eq. (4) gives:

Im,k(ν) = 2iB[k − ν]
1 − exp

(

iπ
[

2B[k − ν] − m
])

π
[

4B2[k − ν]2 − m2
] , (5)

and the synchrotron frequency is:

Ω =
ω0|ǫη|

8πp0B2
=

ω0|(p − p0)η|
2p0B

(6)

where p is the particle momentum in the laboratory frame
and p0 is the central momentum of the beam [4]. There-
fore, one can represent coefficients (3) of series (1) in the
form:

Ck,l(ω) =
∑

m

Im,k(ν)I∗m,l(ν) ×

∞
∫

−∞

F (p) dp

ω + ω0Q0 − mω0η[p − p0]/[2Bp0]
(7)

where F (p) is the normalized distribution function on
momentum.

Because the factors Im,k do not depend on action now,
another form of series (1) can be proposed:

Xm =
i r0ω0N

2πγQ0Z0

∑

n

Zm,n(ω)Xn ×

∞
∫

−∞

F (p) dp

ω + ω0Q0 − nω0η[p − p0]/[2Bp0]
(8)

where

Xm =
∑

k

Zk(ω) I∗m,k(ν)Dk , (9)

and

Zm,n(ω) =
∑

k

Zk(ω) I∗m,k(ν)In,k(ν) . (10)

This form will be largely used for the analysis. Note
that variables Xm can be treated as amplitudes of the
longitudinal multipoles in the bunch spectrum.

IV. ZERO SLIPPAGE LIMIT

As it was mentioned above, the synchrotron frequency
is extremely small in the Recycler Ring. Therefore, the
limit Ω → 0 can be considered as a reasonable first
approximation. Corresponding limiting process should
not be performed by decreasing of the distribution width,
because the effect of chromaticity would also be lost. It
is necessary to proceed to the limit η → 0 taking into
account that ν → ∞ in this case. Then the dispersion
equation following from series (1) is:

1 =
ir0ω0NZ

(ef)
M (ω)

2πγQ0Z0

∞
∫

−∞

F (p) dp

ω + ω0Q(p)
(11)

where Q(p) = Q0 + ξ[p − p0]/p0 is the momentum
dependent betatron frequency [4]. The equation includes
the effective impedance which is M -th eigenvalue of the
series of equations:

Z
(ef)
M (ω)Dk =

∑

l

ρk−lZl(ω)Dl (12)

where

ρk =
sin (πBk)

πBk
exp (−iπBk) , (13)

are Fourier coefficients of the normalized linear density
of the beam: ρ(θ) = 1/B at 0 < θ < 2πB. It is easy to

see that Dk = δk,M and Z
(ef)
M (ω) = ZM (ω) at B = 1.

It can also be shown that for the rectangular potential
well

ρk−l =
∑

m

Im,k(ν)I∗m,l(ν) . (14)

This relation allows to obtain another form of series (12)
corresponding to Eq. (8):

Z
(ef)
M (ω)Xm =

∑

n

Zm,n(ω)Xn . (15)

One more form can be obtained by inverse Fourier
transformation of series (12) resulting in the integral
equation:

Z
(ef)
M D(θ) = iρ(θ)

∞
∫

0

D(θ + θ′)W (θ′) exp
( iωθ′

ω0

)

dθ′ (16)

where W (θ) and Z(ω) are connected by Laplace transfor-
mation (2). Similar equation was applied earlier for an
analysis of resistive wall instability in the Recycler [3].

V. EFFECTIVE IMPEDANCE

Several specific examples of effective impedance are
considered below. Series (15) is used being the most con-
venient for numerical calculation. Its main advantage is
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that the matrix Zm,n is nearly diagonal, which makes
it possible to calculate eigenvalues by use of its rather
small fragments. Note that the effective impedance does
not depend on which value of ν is used for calculation
of the matrix by Eq. (10), because the change produces
unitary transformation of the matrix. In fact, all of the
calculations below presume that ν = 0. In addition, it
is taken into account that Zm,n = Z−m,n = Zm,−n to
reduce series (15) to the form:

Z
(ef)
M (ω)Xm =

∞
∑

n=0

Zm,n(ω)Xn (17)

where

Zm,n(ω) =
∑

k

Zk(ω) I∗m,k(0)In,k(0)×
{

1 at n = 0

2 at n > 0
(18)

A. Exponential wake

Let us consider the wake field:

W (θ) = −Z(exp) ωf

ω0
exp

(

− ωfθ

ω0

)

(19)

and corresponding impedance in frequency domain:

Z(ω̂) =
Z(exp)

ω̂/ωf + i
(20)

(symbol ’hat’ marks the laboratory frame). An analyt-
ical solution of the problem is possible in this case. In
terms of Eq. (16), the eigenfunctions and the correspond-
ing eigenvalues are:

D(θ) = ρ(θ) ×

exp
(

iKθ +
[

i
ω + Kω0

ω0
− ωf

ω0

][

θ
∫

0

ρ(θ′)dθ′ − θ′
])

, (21)
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FIG. 1: Real part of exponential wake effective impedance.
Numerical solutions are found at ω/ω0 = −0.425.

and

Z
(ef)
K (ω) = ZK(ω) =

Z(exp)

(ω + Kω0)/ωf + i
. (22)

It is most remarkable that these eigenvalues do not de-
pend on the bunch factor.

The eigenvalues of series (17) with positive real part
are represented in Fig. 1 at Z(exp) = 1, ωf = ω0, being
calculated by the following method. At any B, first 20
of them are obtained with the help of 100 × 100 matrix
Zm,n starting from 0-th multipole. Each other point is
the first eigenvalue of a 10 × 10 matrix starting from
multipole 50, 100,..., 2000. The number M is defined
as the index of the highest power multipole in the spec-
trum of the eigenmode. Note that only odd M appear
in Fig. 1 because real parts of the eigenvalues are found
to be negative otherwise. Many symbols in the figure
overlap confirming that the eigenvalues do not depend
on B.

According to Eq. (22), all of the eigenvalues should
be located on the solid line plotted in Fig. 1. This is so
indeed, and there is a perfect agreement of numerical and
analytical solutions at the relation:

K =
M + 1

2
. (23)

A very important conclusion follows from these results:
any eigenmode includes a rather small number of multi-
poles, and reasonable accuracy can be reached by using
10× 10 or an even smaller fragment of the matrix Zm,n.
The conclusion will be applied below to more complicated
impedances when analytical solution is not achievable.

B. Resistive wall impedance

The same technique is used in this subsection to cal-
culate the effective resistive wall impedance:

Z(ω̂) = Z(rw)[ sgn(ω̂) − i ]

√

∣

∣

∣

ω0

ω̂

∣

∣

∣ . (24)

The results at Z(rw) = 1 are shown in Fig. (2) and are
fitted by the formula:

Z
(eff)
M (ω) =

1√
B

Z

(

ω +
ω0[M + 1]

2

)

=
1

B
Z

(

ω

B
+

ω0[M + 1]

2B

)

. (25)

At B = 1, the fit coincides with analytical solution of
Eq. (12) if relation (23) is also applied. At arbitrary
B and M >∼10, rather good agreement is provided by
the expression:

Z
(eff)
M (ω) ≃ 1

B
Z

(

ω0M

2B

)

. (26)
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FIG. 2: Real part of resistive wall effective impedance. Solid
lines represent fit (25).

However, the agreement is worse at lower M . In partic-
ular, better approximation for the lowest unstable mode
is:

Z
(ef)
1 ≃ Z(rw)[ 1 − i ]

B1/3
√

K − Q0
(27)

where K is the minimal integer exceeding Q0.

C. Resistive wall + first order damper

At imaginary Z(exp), impedance (20) represents the
simplest model of an instability damper with first order
RC filter (imaginariness is actually provided by appro-
priate arrangement of pickup, kicker, and delay line). We
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FIG. 3: Real part of resistive wall + 1st order damper effective
impedance.

consider it jointly with resistive wall contribution repre-
senting the full impedance in the form:

Z(ω̂) = Z(rw)

[

[ sgn(ω̂) − i ]

√

∣

∣

∣

ω0

ω̂

∣

∣

∣
− iG

ω̂/ωf + i

]

(28)

The effective impedances are calculated with the help of
10×10 matrix starting from M -th multipole at Z(rw) =
1, ωf/ω0 = 200 and several G. Their real parts are
shown in Fig. 3 in the area of rather large M , where
positive values appear for the first time. Fits obtained
using Eq. (26) and (28) are plotted as well, providing
very good agreement for positive values.

D. Resistive wall and high order damper

The impedance

Z(ω̂) = Z(rw)

[

[ sgn(ω̂)−i ]

√

∣

∣

∣

ω0

ω̂

∣

∣

∣

−
[

sin (πω̂/ωs)

πω̂/ωs

]2
{

G at |ω̂| < ωf

0 at |ω̂| > ωf

]

(29)

is considered in this subsection. At non-integer
ωs/ω0, the addition to resistive wall part can be inter-
preted as a simple model of digital damper with sampling
frequency ωs and high order filter of bandwidth ωf [8].
The case G = 5/3, ωs/ω0 = 588.1, ωf = ωs is plotted in
Fig. 4. Again, the numerical values are fitted very well
by Eq. (26). Similar results are obtained at ωf < ωs as
well.

440 480 520 560 600
 M/(2B)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

R
e 

B
Z

M

(e
ff)

Fit
B = 1
B = 1/2
B = 1/4
B = 1/8
B = 1/16

FIG. 4: Real part of resistive wall + high order damper effec-
tive impedance.
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VI. INCREMENT OF THE INSTABILITY

According to Eq. (11), at relatively small momentum
spread the instability increment is:

Im ω =
r0ω0N

2πγQ0Z0
Z

(ef)
M (−ω0Q0) . (30)

As shown in the previous section, its dependence on
bunch factor is rather diverse. For the most unstable
modes the obtained results can be summarized as:

• Exponential wake: no dependence on B;
• Resistive wall: approximately ∝ B−1/3;
• Resistive wall + high frequency damper: ∝ B−1.

In the last case the increment depends on local beam
density only, which means that the instability is driven
by a short-range interaction. This fact can be explained
by taking into account that the bunch spectrum includes
a relatively small number of high order multipoles in this
case, concentrating near M ∼ 2Bωf/ω0. Another im-
portant point is an intimate connection of the multipoles
and space harmonics due to the relation θ = 2B|φ|. As
a result, the beam spectrum of any unstable mode in
laboratory frame includes frequencies ∼ ωf ± ∆ω where
∆ω <∼ ω0/B arises because of the bunching. At ωf ≫
ω0/B, only high-frequency harmonics are present in the
spectrum. Typically, they are rather quickly damped out,
resulting in a suppression of long-range interaction.

Similar reasoning could be applied to any high order
mode (though it is unobservable in practice). Being con-
sistent with Eq. (26) for resistive wall instability, this
statement contradicts – from the first glance – the ex-
ponential wake effective impedance (22) because the last
does not depend on the bunch factor. In fact, there is
no contradiction here because the statement is related to
high modes, i.e. to high frequency only. Then it follows
from (20) and (22):

Z(ef)(ω) = Z(ω) ∝ 1/ω ∝ Z(ω/B)/B

in total agreement with Eq. (26).

VII. THRESHOLD OF THE INSTABILITY

Frequency independent space charge impedance Z =
−iZ(sc) should be taken into account when the instabil-
ity threshold is calculated, because it usually produces a
determining effect on Landau damping. Using Eq. (18),
it is easy to verify that the inclusion provides an addi-
tive contribution −iZ(sc)/B to all diagonal elements of
the matrix Zm,n, i.e. to all its eigenvalues. For example,
threshold of the lowest (most unstable) mode of resis-
tive wall instability should be determined from Eq. (11)
where

Z
(ef)
1 =

Z(rw)[ 1 − i ]

B1/3
√

K − Q0
− iZ(sc)

B
(31)

and minimal K > Q0 is applied. Absence of slippage fac-
tor in this case is actually immaterial, because its contri-
bution to frequency spread would be small in comparison
with chromaticity contribution.

However, the slippage can be important for the analy-
sis of a wide-band damper, because fast-modulated eigen-
modes with dominant contribution of higher multipoles
are most unstable in this case. Fortunately, this draw-
back can be easily remedied due to the narrowness of the
eigenmode spectrum discussed above. It is sufficient to
separate corresponding central multipoles n = ±M in
Eq. (8) and to retain them in all following transforma-
tions. Next, taking into account also Eq. (6) and relation
F (p− p0) = F (p0 − p), the following equation can be ob-
tained instead of Eq. (11):

1 =
ir0ω0NZ

(ef)
M (ω)

2πγQ0Z0

∞
∫

−∞

F (p) dp

ω+ω0Q(p)+Mω0η[p−p0]/2Bp0
.

(32)
This expression can be represented in the form very sim-
ilar to the coasting beam dispersion equation:

1 =
ir0ω0NZ(ef)(ω̂)

2πγQ0Z0

∞
∫

−∞

F (p) dp

ω̂ − ωr(p)[κ − Q(p)]
(33)

where ωr(p) is angular velocity of a particle with mo-
mentum p in the laboratory frame, ω̂ = ω + κω0, κ =
M/2B . An appropriate form of the effective impedance
should be used in this equation. For example, substi-
tution of Eq. (31) allows to find threshold of resistive
wall instability. When the higher modes are considered,
Eq. (26) should be used resulting:

Z(ef)(ω̂) =
Z(ω̂)

B
, (34)

where Z(ω̂) is total beam coupling impedance, including
space charge contribution, resistive wall, damper, etc.

Gaussian distribution function F with dispersion σ is
considered below. Then all the solutions of Eq. (33) are
stable (Im ω ≤ 0) at the condition:

∣

∣

∣

∣

Re∆ω

δω

∣

∣

∣

∣

< f

(

∣

∣

∣

Re (∆ω)

Im (∆ω)

∣

∣

∣

)

= f

(

∣

∣

∣

Im (Z(ef))

Re (Z(ef))

∣

∣

∣

)

(35)

where ∆ω is the impedance produced frequency shift:

∆ω =
ir0ω0NZ(ef)

2πγQ0Z0
, (36)

δω is the r.m.s. frequency spread due to the momentum
spread:

δω =
∣

∣

∣ ξ + η [ κ − Q0 ]
∣

∣

∣

ω0σ

p0
, (37)

and function f is represented by solid line in Fig. 5. A
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simple fit

f(x) ≃
√

4.8 log (x) (38)

is also plotted providing rather good approximation at
x > 3.

The space charge impedance often dominates among
others, so that imaginary part of the total impedance
significantly exceeds its real part. If the beam transverse
distribution function is Gaussian, the statement can be
written in the form:

|Re Z(ef)| ≪ |Im Z(ef)| ≃ Z(ch)

B
=

πZ0Q0

4BS⊥βγ
(39)

where and S⊥ is transverse normalized r.m.s. phase
volume of the beam [5]. Then stability condition (35)
can be represented in the form:

N

S‖S⊥
<

4ω0γ
∣

∣ξ + [κ − Q0]η
∣

∣

πβe2
f
(∣

∣

∣

πQ0Z0

4βγS⊥B Re (Z(ef))

∣

∣

∣

)

(40)
where

S‖ = BCσ (41)

is treated as longitudinal r.m.s.phase volume of the
bunch, and C is the machine circumference.

VIII. EXAMPLE: FERMILAB RECYCLER

We continue the analysis taking the Fermilab Re-
cycler Ring as an example with the following parameters:

• ω0 = 2π × 89.86 kHz
• γ = 9.526
• ξ = −(2 ÷ 6)

• η = −0.0085
• Q0 = 25.425

Then Eq. (40) and (38) give the condition of stability:

D ≡ N/1010

4S‖(eV-s) 6S⊥(π-mm-mrad)
<

0.14
∣

∣

∣ ξ − 0.0085[κ− Q0]
∣

∣

∣

√

log
∣

∣

∣

0.66πZ0

S⊥B Re (Z(ef))

∣

∣

∣ (42)

where 95% emittances are used in the definition of space
phase density D. Some special cases are considered be-
low:

A. Resistive wall impedance

This impedance is the main source of instability
in the Recycler. Characteristic parameter Z(rw) ≃
18 MOhm/m [2, 4] provides for the lowest (most un-
stable) mode:

Re Z
(ef)
1 ≃ 24 (MOhm/m)

B1/3
. (43)

Because slippage is negligible in this case, Eq. (42) gives:

D < 0.14 |ξ|
√

log

(

10

S⊥B2/3

)

. (44)

It means that the beam becomes more stable at the
squeeze, though the dependence is very weak, and es-
timation D <∼ 0.14 | ξ | ≃ 0.3÷0.8 is valid at S⊥ ∼ 1 π-
mm-mrad and any reasonable B.

B. Resistive wall + first order damper

As it is shown in subsection V.C, at ωf ≫ ω0 and
κ ≫ 1 the real part of total effective impedance is:

Re Z(ef) =
18 (MOhm/m)

B

[

1√
κ
− G

1 + ω2
0τ

2κ2

]

. (45)

This value becomes positive at κ > κ0 ≃ [G/ω2
0τ

2]2/3,
but the beam still remains stable at the condition:

D < 0.14
∣

∣

∣ ξ−0.0085κ
∣

∣

∣

√

√

√

√

√log





14
√

κ

S⊥

[

1−(κ0/κ)3/2
]



 (46)

which does not depend on the bunch factor. In depen-
dence on κ0, the right-hand part reaches a minimum (the
beam becomes most unstable) at κ ≃ (1.05÷ 1.10)κ0. A
substitution to Eq. (46) results in the expression

Dmin ≃ 0.28 |0.009κ0 − ξ| (47)

which provides acceptable accuracy at S⊥ = 1 π-mm-
mrad. For example, at G = 4 and ωf/ω0 = 200 (18
MHz filter) κ0 ≃ 2950 , i.e. Dmin ≃ 0.28 |27 − ξ| =
8.1 ÷ 9.2.
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C. Resistive wall + high order damper

As it is shown in subsection V.D, at ωf ≫ ω0 and
κ ≫ 1 real part of the total effective impedance is:

Re (Z(ef)) =
18 (MOhm/m)

B
×

[

1√
κ
−

[

sin (πκω0/ωs)

πκω0/ωs

]2
{

G at |κω0| < ωf

0 at |κω0| > ωf

]

. (48)

With reasonable accuracy, ultimate beam density can be
found by the expression:

Dmin ≃ 0.22
∣

∣

∣0.0086
ωf

ω0
− ξ − 0.25

∣

∣

∣ (49)

which does not depend on the gain (however, G > 1.3 is
required to ensure suppression of the lowest mode). It
gives Dmin ≃ 0.22 |3.2− ξ| = 1.1÷ 2.0 at ωf/ω0 = 400
(present situation [2]), and Dmin ≃ 0.22 |4.8 − ξ| =
1.5 ÷ 2.4 at ωf/ω0 = ωs/ω0 = 588.1.

IX. CONCLUSION

It is shown that the transverse instability of a rect-
angular bunch can be described by the same dispersion
equation as a coasting beam, if an effective beam coupling
impedance is used instead of the standard one. Several
methods to calculate the effective impedance are con-
sidered: integral equation for the beam dipole moment,
corresponding series of equations for Fourier harmonics,
or equivalent series for amplitudes of multipoles. The
last method is most universal and convenient for a nu-
merical solution because corresponding matrix is approx-
imately diagonal. This property allows to use relatively
small fragments of the matrix to calculate its eigenval-
ues including high order ones, starting from desirable
number and scanning step by step the whole matrix.
This also means that any eigenmode includes a rather
small number of multipoles and has a narrow-band spec-

trum. In particular, it follows from this that the spec-
trum of high order eigenmodes includes only high fre-
quencies which typically damp sufficiently rapidly to ex-
clude long-range interaction in the beam. Therefore the
effective impedance of these modes is proportional to
B−1, and high-frequency collective effects depend only
on local linear density of the beam (however it is im-
portant that the density is constant within the whole
bunch). Dependence of the effective impedance on B is
diverse for lower modes, but typically it increases at the
bunch squeezing. For example, effective resistive wall
impedance ∝ B−1/3 for the most unstable mode.

Being applied to the Fermilab Recycler, the theory
gives achievable beam density summarized in the table
below (see Eq. (42) for the units). Numbers in brackets
are achievable beam intensities in units of 1010 at the
phase volume 4S‖ × 6S⊥ = 70 eV-s × 7 π-mm-mrad.

TABLE I: Achievable Recycler beam density and intensity.

Chromat. Aa Bb Cc Dd

-2 0.3 (150) 1.1 (550) 1.5 (750) 8.1 (4000)
-6 0.8 (400) 2.0 (1000) 2.4 (1200) 9.2 (4500)

aNo damper
bDigital damper 35 MHz
cDigital damper 53 MHz
dAnalog damper 18 MHz

High frequency related results should be valid for
multi-bunch regime as well, restricting parameters of any
bunch. However, they cannot be applied to very short
bunches when penetration of particles into the barri-
ers becomes essential. Beam shaping before extraction
(“mining”) is an example of such a regime, when a multi-
pulse RF wave form is generated without any space be-
tween the pulses. Then potential wells are triangular,
and the results break down. The possibility must not be
ruled out that the threshold decreases and instability ap-
pears at the mining, which effect could explain the slow
transverse emittance growth observed in the Recycler at
the mining [9].
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